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space group P2~/c. This is evidently because the 
CHD molecule, which possesses mirror symmetry 
when atom C(5) is disordered, does not lie on a 
mirror plane in the CHD1 structure. Consequently, 
when C(5) becomes ordered, no crystallographic 
symmetry element is destroyed. Also, as the two sites 
C(5A) and C(5B) are not crystallographically equiva- 
lent, the transformation proceeds in one direction 
and the crystal is neither twinned nor cracked. 

The transfer of the enolic proton appears not to be 
directly connected with the ordering of C(5), but is 
one of the consequences which follows the ordering 
of C(5) in the CHD1 structure. It was suggested 
(Katrusiak, 1990a) that the transfer of H(1) can be 
caused by electrostatic interactions between the mol- 
ecules of neighbouring chains. The shift of the chains 
proceeds in the direction which in the CHD1 struc- 
ture would significantly decrease the distance 
between O(1) and O(2 ii) (see Fig. 4 and Table 5), the 
two atoms with the largest negative atomic charges 
in the molecule (Katrusiak, 1990a). A larger distance 
between O(1) and O(2 ii) can  be retained if the mol- 
ecule is rotated and the values of angle p changed 
from positive to negative (see Fig. 4). This rotation, 
however, causes strains in the hydrogen bond, which 

can be released by the observed change in the 
H-atom position. In CHD1 the carbonyl group is 
closer to the central line of the chain than the 
hydroxyl group: such a small inclination of the mol- 
ecules depends on the hydrogen-bond geometry and 
was also observed in the crystal structure of 1,3- 
cyclopentanedione (Katrusiak, 1990b). After the 
rotation, the previous inclination of the CHD mol- 
ecule to the central line of the chain can be restored 
as a consequence of the transfer of the enolic H atom 
to O(1) from O(T) (Table 5) in the hydrogen bond. 

This study was partly supported by the Dean of 
the Chemistry Department, Adam Mickiewicz Uni- 
versity, Project Adiunkt. 
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Abstract 

This paper reports an extension to algorithms for the 
conformational classification of symmetrical chemi- 
cal fragments on the basis of torsion-angle descrip- 
tors [Allen, Doyle & Taylor (1991). Acta Cryst. B47, 
29-40, 41-49, 50-61]. The algorithms take account of 
2D topological symmetry and bring all cluster 
centroids into a single asymmetric unit of conforma- 
tional space. In some cases, however, mean confor- 

* Part 4: Allen & Johnson (1991). 

mational geometries show marginal distortions from 
ideal symmetric forms, i.e. the centroid lies close to a 
special symmetry position in conformational space. 
Here we examine a number of methods by which this 
proximity can be recognized. A simple, general solu- 
tion is adopted based on the torsional dissimilarities, 
D(Cc,Cc,), between a given cluster centroid (Cc) and 
each of its symmetry equivalents (Cc,). Symmetry- 
related clusters, c', are coalesced with the original 
cluster, c, if D(Cc, Cc,)<_MULT x (De)max, where 
(De)max is the maximum dissimilarity between any 
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fragment in c and the centroid Co. MULT is 
normally unity, but can be altered in practical appli- 
cations. This procedure yields the 'order' of the 
symmetrized cluster (i.e. the number of symmetry 
variants that have been coalesced) and hence the 
multiplicity of the special position. The implications 
of cluster coalescence in the generation of statistical 
descriptors for the torsion-angle distributions is con- 
sidered. The procedures are illustrated by application 
to a trial data set of six-membered carbocycles. 

1. Introduction 

Cluster analysis (see e.g. Everitt, 1980) is commonly 
used for the classification of objects on the basis of 
binary or numerical descriptors. Previous papers 
(Allen, Doyle & Taylor, 1991a-c; hereafter ADT1, 
ADT2, ADT3) have described various clustering 
algorithms for the classification of 3D conformations 
of chemical fragments by means of torsion-angle 
descriptors. The algorithms have been used to inden- 
tify conformational minima that have been observed 
experimentally in crystal structures for which full 3D 
coordinate data are available in the Cambridge 
Structural Database (CSD; Allen, Kennard & 
Taylor, 1983). The impetus for this work has been 
the provision of well-characterized conformational 
geometries for use in molecular modelling. 

We have examined the single-linkage (ADT1), 
complete-linkage and Jarvis-Patrick (1975) cluster- 
ins algorithms (ADT2) as techniques for 3D pattern 
recognition. A particular feature of our implementa- 
tions (ADT3) is their ability to take account of the 
topological symmetry of a fragment during the clus- 
tering process. Many fragments of interest exhibit 
topological symmetry and this gives rise to permu- 
tational symmetry in the (N/x N,) multivariate tor- 
sional data set (N/=number  of experimental 
observations of the fragment, N, = number of tor- 
sion angles used to describe the fragment geometry). 
Further, in 3D we may have to take account of 
enantiomeric conformations which could be present 
in the data set. Full details of symmetry speci- 
fications are given in ADT1. 

For symmetrical fragments, the underlying confor- 
mational space will also exhibit symmetry (see e.g. 
Dunitz, 1979; Norskov-Lauritsen & Biirgi, 1985; Auf 
der Heyde & Biirgi, 1989a-c). Our implementations 
of symmetry-modified clustering algorithms (ADT1, 
ADT2) recognize this fact, and generate a final clus- 
ter listing in which all conformations are brought 
into their closest mutual proximity. The cluster 
centroids are therefore constrained to lie within a 
single asymmetric unit of the appropriate multi- 
dimensional space. A complication may arise, how- 
ever, if asymmetric conformational minima lie very 
close to special symmetry positions in that space. 

Examples of these positions are those that represent 
conformations of perfect 3D symmetry, e.g. the D3d 
chair form or the C2v boat form of cyclohexane. 
Thus some of the mean conformational geometries 
reported in ADT1, ADT2 and ADT3 have marginal 
distortions from their expected symmetries. These 
conformations can be 'symmetrized' by averaging the 
torsion angles of the original 'asymmetric' cluster 
together with those of its symmetry variants which 
fall close to it in conformational space. The problem, 
identified in the earlier work, is to arrive at a defi- 
nition of 'close', i.e. to establish criteria under which 
symmetry-related clusters may validly be coalesced 
to yield a 3D conformation which is both symmetri- 
cal and chemically sensible. We report here a solu- 
tion to this problem that is applicable to results 
generated by any of the clustering algorithms 
described in ADT1 and ADT2. We also consider 
briefly the effects of cluster coalescence on the statis- 
tical description (Allen & Johnson, 1991) of the 
resultant torsion-angle distributions. 

2. Trial data set 

We have used the trial data set of six-membered 
carbocycles previously employed in the development 
of the clustering algorithms. Full details of its 
derivation from the CSD, including literature cit- 
ations, are given in ADT1. The data set comprises N I 
= 222 rings, for which the N, = 6 intra-annular tor- 
sion angles may be generated via the GSTAT  pro- 
gram (CSD User Manual, 1989). The major 
conformations found (ADT1, ADT2) in the data set 
are all close to ideal symmetric forms: chairs (D3d), 
phenyl rings (D6h), boats (Qv) and half chairs (Qh). 
The previous work also reveals a number of confor- 
mations which exhibit significant asymmetric distor- 
tions. 

3. Conformational space for six-membered 
carbocycles 

The relevant conformational space is 3D and all 
conformations can be represented by spherical polar 
coordinates (Pickett & Strauss, 1970). The coordi- 
nate set Q (the total puckering amplitude), 0, q~ (Fig. 
1) is simply related to the three degrees of freedom, 
denoted as q2, q~2, q3, in the Cremer & Pople (1975) 
description of ring pucker. The conformations of n 
six-membered rings can therefore be represented by a 
series of n concentric spheres of radii Q~ ~ Qn, since 
each ring will have a different puckering amplitude. 

Special symmetric conformations (Table 1, see e.g. 
Cremer & Pople, 1975; Boeyens, 1978) exist on these 
spherical surfaces as indicated in Fig. 1. The chair 
form occupies the north pole ( 0 = 0  ° ) with its 
enantiomer at the south pole (0 = 180°). The equator 
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Table 1. Canonical forms of six-membered rings 

Energy-minimized (symmetrized) torsion angles (r) (Bucourt & Hainaut, 
1965) and their vector positions (0, q~) (Boeyens, 1978) in spherical confor- 
mational space (o). The multiplicity (M) and order (O) of  each special 
position (see text) is indicated. Conformational descriptors are PH = 
phenyl, C = chair, B = boat, E = envelope, HC = half-chair, SB = screw- 
boat (1,3-diplanar), TB = twist-boat, as depicted in Fig. 1. 

Con£ M O rj r2 r3 r4 r5 r6 ~ 0 
PH 1 24 0 0 0 0 0 0 - 
C 2 12 60 -60 60 -60 60 -60 0 
B 6 4 0 60 -60 0 60 -60 0 90 
TB 6 4 33 33 -70 33 33 -70 30 90 
E 12 2 30 0 0 -30 60 -60 0 55 
HC 12 2 45 -15 0 -15 45 -62 30 50 
SB 12 2 40 0 -22 0 40 -60 30 68 

(0 = 90 °) is occupied by six equivalent boat forms at 
q~ = 0, 60, ... 300 °, separated one from another on a 
pseudorotation pathway by six twist-boats at ~p = 30, 
90, ... 330 °. The envelope (half-boat) conformation is 
intermediate between the boat and chair. Six equiva- 
lent conformations exist in the northern hemisphere 
at ~p = 0, 60, ... 300 ° and 0 =  55°; enantiomers of 
these six conformations are in the southern hemis- 
phere at 0 = 125 °. Similarly, six half-chairs (0 --- 50 °) 
and six screw-boat (1,3-diplanar) conformations (0 
= 68 °) exist in the northern hemisphere on the q~ arcs 
(q~ = 30, 90 . . . .  330 °) connecting the chair and twist- 
boat conformations. Half-chair and screw-boat 
enantiomers are in the southern hemisphere at 0 = 
139 and 112 ° respectively. The planar phenyl ring 
occupies the centre of the family of spheres with Q = 
0 and 0 and ~p indeterminate. 

Any general conformation G, e.g. one which is 
intermediate between an envelope and a half-chair 
at, say, 0 = 45 °, will occur 12 times in the northern 
hemisphere (and at ~p values of 15, 45, 75 . . . .  345 =. in 
this example). Its 12 enantiomers occur in the 
southern hemisphere at 0 = 135 ° and at the same ~p 

+ C (e=o*) 

HC 

k ~  " 8 .::: ~g"~":  B . . . . . .  ~ 1  v 1 5 o  
~ ~ /  110 TB 

Asymetric unit= 1124 of sphere 

- C  (e=180 o) 

Fig. 1. R e p r e s e n t a t i o n  o f  c o n f o r m a t i o n a l  space  for  s i x -membered  
r ings us ing the spherical  po l a r  c o o r d i n a t e  set Q, 0, q~. Special  
symmet r i c  c o n f o r m a t i o n s  are  ind ica ted  as C = chair ,  B = boa t ,  
E = envelope ,  H C  = half -chair ,  SB = sc rew-boa t  ( l , 3 -d ip lana r ) ,  
T B  = twis t -boat .  The  phenyl  r ing ( P H )  is at  the cent re  o f  the 
sphere  and  G is any  general  c o n f o r m a t i o n .  The  isola ted segment  
(1/24th)  o f  the sphere  is the a s y m m e t r i c  unit.  

values as the northern hemisphere conformers. Thus 
the asymmetric unit of this conformational space is 
1/24th of the complete sphere. More precisely it is 
any one of the 12 unique 30 ° q~ segments of the 
northern (or southern) hemispheres. The ~o = 120 ° 
(boat) to q~ = 150 ° (twist-boat) segment is illustrated 
in Fig. 1. 

This definition of the asymmetric unit corresponds 
exactly to the 24 possible torsional permutation/ 
inversion operations described in ADT1. The 12 
equivalent permutations described in that paper rep- 
resent the 12 possible ways in which a 2D search 
fragment of D6h toposymmetry can be mapped onto 
a given target entry in the CSD. They correspond to 
the 12 possible (arbitrary and equivalent) atomic 
numbering schemes which can be imposed on each 
ring in the data set. For an asymmetric general- 
position conformation of defined geometry, each 
atomic enumeration generates one of 12 possible 
symmetry equivalents in conformational space. The 
remaining 12 equivalents are generated by inversion. 
For a six-membered carbocycle, analogous results 
are therefore generated by either (a) permuting the 
atomic numbering scheme against a fixed geometrical 
framework (as above), or (b) permuting the geomet- 
rical descriptors (torsion angles) with respect to a 
fixed atomic enumeration (as in ADTI).  

If we apply torsional permutations and inversions 
to the symmetric conformations, then some or all of 
the 24 variants coalesce at one of the special posi- 
tions identified above. For the D6h-symmetric phenyl 
ring, all 24 variants coalesce at the centre of the 
sphere, a position of unit multiplicity and of order 
24. In the case of the D3d-symmetric chair, 12 vari- 
ants coalesce at the north pole and 12 (enantiomeric) 
variants at the south pole: positions of multiplicity 2 
and order 12. Each of the six boat or twist-boat 
conformations on the equatorial pseudorotation 
pathway is of order 4, whilst the 12 envelope, half- 
chair or screw-boat positions are of order 2. These 
results are summarized in Table 1. We now consider 
how these symmetry properties of conformational 
space can be detected during the clustering process. 
We begin by analysing the steps in this process with 
respect to the spherical polar construct of Fig. 1. 

4. Symmetry-modified conformational clustering 

The raw data set 

The initial sets of N, torsion angles generated by 
GSTA T will place a given ring in an arbitrary asym- 
metric unit of conformational space. This fact is an 
inescapable consequence of the alternative atomic 
numberings discussed above and in ADT1. Possible 
positions for six general fragments g]-g6, six chair 
fragments ci-c6, and six boat fragments hi-b6, are 
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illustrated in Fig. 2. We assume in this example that 
all fragments have similar puckering amplitudes Q, 
and are represented on the surface of a sphere of that 
radius. The individual boat and chair conformations 
exhibit varying deviations from ideal symmetrized 
forms and hence appear in general positions close to 
the special sites. 

Dissimilarity calculations 

The Minkowski metric, D (Everitt, 1980), can be 
used to calculate the torsional dissimilarity of two 
fragments (ADT1, ADT2). Thus, the dissimilarity 
D(b~,bs) is a measure of the distance between frag- 
ments b~ and b5 in conformational space. D(b~,bs) is 
obviously large for the example of Fig. 2. The 
symmetry-minimized dissimilarity is calculated by 
keeping b~ static and moving b5 to all of the 24 
possible symmetry-equivalent positions, i.e. into each 
of the 24 asymmetric units of conformational space. 
This is effected by applying the user-supplied 
permutation/inversion list to the torsion angles for 
bs. The dissimilarity D(b~,b'~) is calculated for the n 
= 1---,24 permutations and the value of n which 
gives rise to the minimum value of D(b~,bs) is also 
recorded as the relevant overlap coefficient, o(b~,bs). 
All Ny(N s -  1)/2 values of D(p,q)min and o(p,q) are 
calculated by this procedure. 

The clustering process 

The clustering process is fully decribed for all three 
algorithms in ADT1 and ADT2. Whilst specific 
details differ from algorithm to algorithm, the under- 
lying processes are identical. A given cluster is built 
up around an arbitrary 'root fragment pair' selected 
by the algorithm on the basis of the stored mini- 
mized dissimilarities. One of these fragments is 
chosen as the static fragment of the pair and is called 
the cluster root. This root (i.e. g2 in Fig. 2) may be in 
any of the asymmetric units of conformational space 

and forms a focus for the symmetry transformations 
(arrowed in Fig. 2) which lead to cluster formation. 
Roots of different clusters may be in different asym- 
metric units. The clustering proceeds according to 
the relevant algorithmic rules until a STOP point 
(ADT1) is reached (single or complete linkage) or the 
Jarvis-Patrick single pass (ADT2) is completed. If 
fragments g2, b~ and c6 of Fig. 2 were chosen as 
arbitrary roots, then a possible distribution of clus- 
tered fragments in conformational space at this stage 
is illustrated schematically in Fig. 3(a). There is no 
guarantee that all members of a given cluster (e.g. 
that formed around c6) will be contained within one 
asymmetric segment. This merely reflects the fact 
that fragments do not necessarily enter the cluster via 
their proximity to c6 itself, but via proximity to some 
other fragment already assigned to that cluster. 

The clustering process is concluded by bringing the 
largest clusters into close mutual proximity in con- 
formational space. This is performed via a con- 
tinuation of the single-linkage process (ADT1), or by 
centroid clustering in the complete-linkage and 
Jarvis-Patrick methods (ADT2). Assuming that the 
cluster formed around g2 remains static, possible 
transformations of the b~ and c6, clusters, to new 

t t positions b~ and c6, are indicated in Fig. 3(b). 

Generation of  summary statistics 

A wide variety of summary statistics are generated 
for each of the clusters detected by the algorithms. 
These are fully described in ADT3 and extended by 
Allen & Johnson (1991). Two of these descriptors are 
summarized here, since they are essential to the 
ensuing discussion of special-position location. 

Mean torsion angles. For a given cluster these are 
derived (ADT3) by a reaveraging procedure, 
designed to locate the true 'centroid' of the cluster 
and to provide optimum overlap of fragments within 

180 

Fig. 2. Representative random conformations of six-membered 
rings generated by the CSD program GSTA T for chair (c), boat 
(b) and general (g) forms. The arrows then indicate symmetry 
transformations performed during cluster formation in which 
fragment g2 is arbitrarily selected as the cluster root (see text). 

c~ 

0 180 180 0 

c 6 

(a) (b) 

Fig. 3. Symmetry-modified clustering of six-membered ring con- 
formations. (a) Clusters formed around the initial randomly 
chosen cluster roots g2, b~ and c~. (b) Symmetry transformation 
of clusters around bl and c6 to new positions (b~, c~,) which are 
in closest mutual proximity to g2. 
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a cluster. The procedure is necessary since the chosen 
cluster root, with respect to which all incoming 
fragments have been oriented, may be close to the 
edge of the final cluster space. To allow for this 
situation we generate mean torsion angles for the 
cluster, and then reorient all fragments to provide 
optimum overlap with these mean values. The re- 
orientation is performed twice to establish the final 
mean torsion angles reported in ADT1, ADT2 and 
ADT3. 

Intra-cluster dissimilarities. These are calculated 
(ADT3) with respect to the cluster centroid estab- 
lished above, and using the Minkowski metric. The 
fragment which is closest to the centroid is termed 
the 'most representative fragment' of the cluster and 
its coordinates may be saved for use in molecular 
modelling. The quantity which is of most relevance 
to the ensuing discussion is Dmax, the maximum 
dissimilarity (distance) between a cluster member 
and the cluster centroid. Whilst Dma x indicates 
nothing about cluster shape, it does provide a good 
indication of cluster spread. 

5. Cluster coalescence at special positions 

The initial implementation (ADT3) of the symmetry- 
modified algorithms was primarily concerned with 
providing a 'dissection' of a multivariate data set, the 
results of which would immediately be useful in 
molecular-modelling applications. The mean torsion 
angles presented earlier for six-membered carbo- 
cycles (ADT1, ADT2) therefore reflect the 'asym- 
metric clustering' depicted in Fig. 3. Results for the 
12 clusters of population (Np)_> 4 obtained by the 
Jarvis-Patrick technique (ADT2) are reproduced in 
Table 2(a). A number of these clusters have mean 
torsion-angle sequences that are very close to those 
of the ideal symmetrized forms. Chemical reasoning 
dictates, for example, that mean torsion angles for 
the phenyl cluster 1 should all be zero. Similarly the 
chair cluster 2 is best represented as a D3a-symmetric 
form with mean puckering angles of _ 54.6 °. The 
problem, stated in the Introduction and exemplified 
by the discussions above, is to establish an algorith- 
mic mechanism which permits formation of sym- 
metrized clusters, but only in appropriate cases. The 
mechanism must be applicable to all three of the 
algorithms described in ADT1 and ADT2. 

There are a number of ways of solving this prob- 
lem, and each imposes a different computational 
overhead on the extended algorithms. Each of the 
solutions is briefly discussed below in decreasing 
order of computational complexity. Throughout the 
discussions we use p and q as basic-fragment desig- 
nators, and p' and q' to denote any of the possible 
(here 24) symmetry variants of those fragments. 

Use of fully symmetrized' dissimilarities 

In this approach all of the symmetry variants of 
each of the original N i fragments are included in the 
initial data set, i.e. the data set is expanded prior to 
analysis using the appropriate permutation/inversion 
operations. This results here in 24Ny fragments and 
24Ns(24N i -  1)/2 unique dissimilarities of the form 
D(p,q), D(p,q') and D(p,p'). This approach has been 
used (Norskov-Lauritsen & Bfirgi, 1985; Auf der 
Heyde & Bfirgi, 1989a-c) in the analysis of symmet- 
rical configuration spaces. For the present example it 
will result in a complete description of the spherical 
conformational space. Each cluster representing a 
'general' conformation (e.g. that formed about g2 in 
Fig. 3) will now appear 24 times in the resultant 
output summary, centred about each of the 24 occur- 
rences of g2. This procedure will, however, form 
clusters across the special positions, each cluster 
occurring with the correct multiplicity in the output 
summary: 1 phenyl, 2 chair, 6 boat clusters etc., as 
indicated in Table 1. 

This approach has the benefit that the symmetry 
of conformational space can be checked by inspec- 
tion of the resultant cluster output. In computational 
terms the procedure is potentially disastrous for any 
data set with more than very moderate values of N s 
or Ns (the number of permutational symmetry opera- 
tors). Indeed, it was for this very reason that the 
symmetry-modified algorithms of ADT1 and ADT2 
were developed, to use only the Nr(N s -  1)/2 values 
of D(p,q')min as described earlier. 

Use of 'partially symmetrized' dissimilarities 

It would appear, in principle, that the computa- 
tional overheads above can be reduced by using 
D(p,q')min (as now) together with all Nr(N~-1)  
values of D(p,p') as a basis for cluster formation. 
This modest increase in the number of stored D 
values has implications for the derivation of the 
Jarvis-Patrick nearest-neighbour table, and requires 
alteration of all three algorithmic bases for cluster 
formation. 

Both of the approaches above involve modifi- 
cation of the minimal metrical basis for clustering 
derived in ADT1 and ADT2. Considerations in 
earlier sections of this paper indicate that effective 
(and simpler) solutions are possible via an a pos- 
teriori treatment of the asymmetric cluster sets, of 
which the data in Table 2(a) are an example. 

Symmetrization via fragment dissimilarities 

At the end of the asymmetric clustering process 
the program has full knowledge of cluster member- 
ship, in terms of fragment identifiers (p, q, etc.) and 
their torsion-angle sequences, transformed as 
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Table 2. Mean torsional angles (°)for the ten major 
clusters (population Np>5)  obtained with the 
symmetry-modified Jarvis-Patrick algorithm for the 

trial data set 

C o l u m n  h e a d i n g s  are:  N, = c l u s t e r  n u m b e r ,  r t - r 6  a r e  t o r s i o n  a n g l e s ,  (Dc)ma, 

is t h e  m a x i m u m  c e n t r o i d - f r a g m e n t  d i s t a n c e  C),  O, is the  ' o r d e r '  o f  s y m m e -  

t r i z ed  ( c o a l e s c e d )  c l u s t e r s  (see text ) .  C o n f o r m a t i o n a l  d e s c r i p t i o n s  a r e  P H  = 

p h e n y l ,  C = c h a i r ,  B = b o a t ,  H C  = h a l f - c h a i r ,  SB = s c r e w - b o a t  ( I , 3 -  

d i p l a n a r ) ,  T B  = t w i s t - b o a t .  

C l a s s  N,. Np r, 
(a)  A s y m m e t r i c  c l u s t e r s  

PH 1 35 - 1.0 
C 2 46 52.1 

3 9 37-5 
B 4 30 - 72.2 

5 14 - 56.2 
6 9 - 55-3 
7 6 - 50.8 

HC 8 29 9.2 
SB 9 9 - 3.0 
TB 10 9 - 36.6 

r2 r3 r4 r5 r6 (D,)ma, O ,  

0.5 1.2 - 2 - 4  2.0 - 0 . 3  16.1 
- 50-8 53.3 - 57.7 58.7 - 55.3 36.2 
- 41.3 56.2 - 66. I 62.3 - 48.5 27.8 

70-2 0.8 - 70.3 68.2 2.4 32.4 
59.4 - 4 . 4  52.6 56.7 - 2 . 2  27.3 
71.6 - 6 . 5  -66 .2  83.8 - 18.8 38.0 
58.2 15.2 - 84.3 93.8 - 27.1 53.2 

1-2 19-2 -48-7  60.6 -39 .9  44.1 
15.4 7.3 -40-3  52.7 -31 .4  55.1 
73.3 - 22-2 - 50-5 89-1 - 36.5 50.0 

(b) V a l u e s  fo r  c o a l e s c e d  

PH I 840 0.0 
C 2 552 54.6 

3 18 37.5 
B 4 120 -70 .3  

5 28 - 54.4 
6 9 - 55.3 
7 6 - 50.8 

HC 8 58 14.2 
SB 9 18 2.2 
TB 10 9 - 36.6 

c l u s t e r s  a t  M U L T  = 1.0 ( d e f a u l t )  

0.0 0.0 0.0 0.0 0.0 22.4 24 
- 54.6 54.6 - 54.6 54.6 - 54.6 36.2 12 
- 44.9 59.2 - 66.1 59.2 - 44.9 37.2 2 

70-3 0-0 - 70.3 70.3 0.0 34.0 4 
58.0 - 3 . 3  - 54.4 58-0 - 3-3 30.9 2 
71.6 - 6 . 5  -66 .2  83-8 - 18.8 38.0 I 
58.2 15-3 - 84.3 93.8 - 27.1 53.2 I 

1.2 14-2 -44 .3  60.6 -44-3  63-0 2 
15.4 2-2 - 35.8 52.7 - 35.8 62.9 2 
73-3 -22 .2  -50 .5  89.1 -36-5  50.0 I 

(c) A d d i t i o n a l  c o a l e s c e n c e s  a t  M U L T  = 1.1 

B 5 56 - 56.2 56.2 0.0 - 56.2 56.2 0.0 41.1 4 
7 12 -54 .5  54.5 21.2 -89 .0  89.0 -21 .2  81.9 2 

(d) A d d i t i o n a l  c o a l e s c e n c e s  a t  M U L T  = 1.25 

C 3 27 38.8 - 42.5 55.7 - 64.8 61.5 - 48.7 33.0 3 
TB 10 18 - 2 9 . 4  73-3 - 29.4 -43 .5  89.1 -43 .5  77.7 2 

(e) A d d i t i o n a l  c o a l e s c e n c e s  a t  M U L T  = 2.0 

B 6 18 -60 .8  77.7 - 12.7 -60 .8  77.7 - 12.7 64.7 2 
HC 8 87 9-1 - 2-3 22.8 - 49.7 56.6 - 35.9 39.7 3 
SB 9 27 - 3-7 11.3 11.9 - 41.5 48.5 - 26.3 51.4 3 
TB I0 36 - 36.5 81.2 - 36.5 - 36.5 81.2 - 36.5 82-5 4 

required by symmetry to place each fragment in the 
relevant cluster. Fragments p, q,... are now fixed in 
this asymmetric cluster. We may then explore con- 
formational space around any fragment p, on a 
cluster-by-cluster basis, by calculating dissimilarities 
of the type D(p,p') and D(p,q'). Any symmetry- 
related fragment, p' or q', which falls within a speci- 
fied distance (Osym) of p is then included in an 
expanding cluster; its details are added to the cluster 
membership arrays. For a cluster of population Np, 
this approach requires the calculation of (Ns-  1)Np 
values of D(p,p') and of ( N s -  1)(Np- 1)Np/2 values 
of D(p,q'), where Ns is the total number of symmetry 
operations. However, this calculation can probably 
be reduced to the D(p,p') set alone and still produce 
effective symmetrization. The crux of the process is 
to be able to specify, or determine, a suitable value 
for Osy m. 

Within the logic of the single (ADT1) and 
complete-linkage (ADT2) algorithms, the obvious 

value for Osy m is the maximum D(p,q) value actually 
used by the program in cluster formation. Since the 
D(p,q) are used hierarchically in these algorithms, 
Osy m would be equated to the D(p,q) used at the 
STOP point specified by the user. A similarly 
obvious setting of Dsy m is not, however, so readily 
derived for the non-hierarchical Jarvis-Patrick 
method. The largest D(p,q) employed in constructing 
the nearest-neighbour (NN) table (ADT2) might 
appear suitable, but it can vary dramatically depend- 
ing on the user choice of NN table size. We have 
therefore turned our attention to Dma x (described 
above), the maximum distance from the cluster 
centroid exhibited by any member of the cluster. 
This quantity is calculated identically for all three 
algorithms from the final asymmetric cluster mem- 
bership details. These considerations have led us to 
what appears to be the simplest solution to the 
problem of cluster coalescence. 

Symmetr&ation v& centroid dissimilarities 

The quantity Dmax represents our current best 
estimate of the spread of a cluster in conformational 
space. Whilst it is possible for clusters to be of any 
shape, we know that all members of the cluster lie 
within Dmax of the centroid. Thus, in our current 
example, we approximate cluster shapes as spheres of 
radii (Oc)max, where c is a cluster identifier, and with 
the cluster centroids Cc at the centres of the spheres 
as in Fig. 4. We are at least guaranteed that all 
cluster members lie within this sphere. 

For a given cluster, c, we now calculate the Ns - 1 
inter-centroid dissimilarity (distance) values 
D(Cc, Cc,). Symmetry-related clusters c' are then 
coalesced with c if D(C,.,Cc,) <- MULT x (De)max, 
where MULT is a multiplier normally set to 1-0, but 
which may be altered by the user. The procedure 
yields the order, Oc, of the symmetrized cluster: i.e. 
the number of symmetry variants of the original 
asymmetric cluster, including the identity, which 
have been coalesced. Statistical descriptors for the 
symmetrized cluster, which now has a population of 

F i g .  4 .  C o a l e s c e n c e  o f  s y m m e t r y - r e l a t e d  v a r i a n t s  o f  t h e  a s y m -  

m e t r i c  c l u s t e r  s e t  o f  F i g .  3.  C o a l e s c e n c e  c r i t e r i a  a r e  d i s c u s s e d  i n  

t h e  t e x t .  O n l y  6 o f  t h e  12 p o s s i b l e  c h a i r  v a r i a n t s  a r e  i n d i c a t e d .  
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NpOe, are then derived. The statistical implications of 
cluster coalescence are considered later. 

Cluster-coalescence results for various values of 
M U L T  are reported in Tables 2(b-e). For this data 
set, the results of Table 2(b) (MULT = 1.0) are in 
excellent accord with a visual assessment of the 
proximity of the asymmetric conformations (Table 
2a) to a symmetrical form. This accord is, perhaps, 
improved by the additional coalescences generated 
with M U L T  = 1.1 (Table 2c). Thus clusters 1, 2, 4, 8, 
9 are fully symmetrized [compare De in Table 2(c) 
with values in Table 1] at M U L T - - 1 . 0 ,  and full 
symmetry for boat cluster 5 is achieved by a margi- 
nal increase in MULT.  Two other clusters, chair 
form 3 and boat form 7, achieve only partial symme- 
trization (by comparison with Table 1) at the MULT 
= 1.10 level. This is entirely reasonable in the light of 
the asymmetric distortions exhibited by these confor- 
mations in Table 2(a). Further coalescences can be 
induced by raising M U L T  still further, and complete 
symmetrization of the distorted twist-boat conforma- 
tion (10) is achieved at M U L T = 2 . 0 .  

The effectiveness of the original clustering is 
reflected in the results of Table 2(b). They indicate 
that the symmetry variants of the cluster centroids 
Co. for the highly symmetric clusters 1, 2 and 4 all lie 
within the (approximate) spheres centred on the 
original Cc values derived from the 'asymmetric' 
clustering. The proximity of these original Ce values 
to the corresponding special position, and hence the 
validity of the symmetrization process, is reflected in 
the very small changes observed in (De)ma x for the 
asymmetric (Table 2a) and symmetric (Table 2b) 
forms of clusters 1, 2 and 4. 

The use of (Dc)ma x as  a symmetrization criterion 
can be criticized, since it is not a constant, but varies 
according to the compactness of the original asym- 
metric cluster. It is for this reason that boat cluster 5 
is not completely symmetrized at M U L T  = 1.0: the 
o r i g i n a l  (De)ma x value is slightly lower (27.3 °) than 
values for clusters 2 (36.2 °) or 4 (32.4°). Conversely, 
the half-chair and screw-boat clusters 8 and 9 are 
symmetrized very early (and probably correctly) 
because of the broader spreads of their asymmetric 
forms. We feel, therefore, that the variability of the 
(Dr)max criterion is defensible, even preferable, since 
it effectively weights the coalescence process accord- 
ing to the compactness of the original asymmetric 
cluster. In some cases it may be appropriate to leave 
a very compact cluster in this form: the symmetry 
variants may, in fact, form an annulus about some 
special position, but not encompass it. We suggest 
that a large increase in (Dr)max on symmetrization 
may be an indicator of such behaviour. The use of 
the M U L T  operator permits coalescence properties 
to be examined in a systematic manner. In the 
present example it would be sufficient to report all 

results from M U L T  = 1.1, but we note that a fully 
symmetrized form of cluster 10 can be obtained at 
M U L T  = 2.0. 

Whilst we have chosen (Dc)ma x as  a simple, empiri- 
cal criterion for determining cluster coalescence, we 
note that other approaches can be envisaged. For 
example, it seems intuitively correct to merge 
symmetry-related clusters if all members of the 
resultant single cluster lie in the same minimum of 
the conformational potential-energy surface. This 
could be revealed by statistical tests for unimodality. 
For example, we might choose to coalesce clusters if 
the distribution of fragments in the resultant merged 
cluster does not depart significantly from a multiva- 
riate normal distribution. 

6. Statistical impfications 

A variety of statistics are generated (ADT3, extended 
by Allen & Johnson, 1991) by the cluster-analysis 
package implemented within the CSD program 
GSTAT. These are now amended as follows for 
symmetrized clusters. 

The most representative fragment (MRF; A D 73) 

This is now assessed as the fragment in the data set 
which has torsion angles which are closest to the 
symmetrized mean torsion angles given by the cur- 
rent M U L T  × (De)ma x criterion. 

The overall clustering summary (ADT3) 

This is ranked, as before, on N p -  the population 
of the asymmetric cluster. However, the orders De 
are now added to the summary. Intra-cluster and 
inter-cluster dissimilarities are calculated for the 
coalesced clusters of full population OeNp. 

Statistical descriptors for individual torsion-angle dis- 
tributions 

These are provided (ADT3) for each individual 
torsion angle in each cluster. These descriptors are 
discussed in detail by Allen & Johnson (1991); both 
arithmetic and circular statistical approaches are 
employed. The key arithmetic values for a distribu- 
tion of n torsion angles ri (i = l---n) are the mean 
(~a), the sample standard deviation o(~'a) and the 
standard error of the mean o-(~a), given by: 

~ = [27=, ~'i]ln (1) 

~r(r~) = [Y(I~ - ril)2/n,] 1"2 (2) 

o(L~) = o'(ra)/(nz) 1/2. (3) 

For asymmetric clusters we have regarded the 
torsion-angle distributions (e.g. those for 1"l, 'rz,...r6 
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in Table 2) as being independent of one another, 
each containing Np contributors. In these circum- 
stances n = n 2 - - N p  and n~ = N p - 1 .  Similar con- 
siderations apply in the derivation of circular 
statistics (Allen & Johnson 1991). 

The assumption of z-distribution independence is 
clearly satisfactory for acyclic systems. It is also 
satisfactory for asymmetric M-membered rings. This 
latter statement might appear to be at variance with 
the M -  3 degrees of freedom in the puckering of 
M-membered rings, since treating Z~...~'m as indepen- 
dent would imply M degrees of freedom. However, 
calculation of the M different torsion-angle averages 
tells us something about the relationships between 
the endocyclic valence angles and accounts for the 
missing three degrees of freedom. Thus, there is one 
degree of freedom in the puckering of cyclobutane 
but there is obviously more than one degree 
of torsional freedom: fixing one of the endocyclic 
torsion angles does not fix all of the others in an 
asymmetric ring. 

For symmetrized systems the assumption of 
independence for e.g. z~-z6 in Table 2(b), however, is 
completely unacceptable. In obtaining the distribu- 
tions for z~-z6 for symmetrized clusters we will have 
permuted each observed value into each distribution 
as dictated by the symmetry search. Thus each of the 
six phenyl-ring torsion angles is permuted four times 
into each of the 7"~-z6 distributions to obtain the 6 x 
4 = 24 variants. For the chair form each angle per- 
mutes twice to yield the 6 x 2 -- 12 variants. We term 
this the torsional frequency F, where t ranges from 
1--,Nt, the total number of torsion angles defining 
the fragment. F, is not a constant for z~-~'6, but 
reflects the symmetry of the special position. Thus 
the non-zero torsion angles of boat cluster 4 have Ft 
= 1, but F, = 2 for the zero values. These F, values 
are now (additionally) reported for symmetrized 
clusters. 

It is obvious, then, that we have a fourfold excess 
of (equivalent) data points in each r distribution for 
a phenyl ring, a twofold excess for chairs, etc. This 
excess does not affect the calculation of the mean 
[equation (1)] or the sample standard deviation 
[equation (2)]. Correct values are obtained by using n 
= OcNp and n~ = O~Np- 1 (except for one special 
case noted below). The principal problem concerns 
the value of n2 to be used in assessing the standard 
error of the mean via equation (3). The number of 
different z values included in each symmetrized 7" 
distribution is N d = O c N p / N t ,  and it might seem that 
Nd is a suitable value for n2 in equation (3). 

However, the use of n2 = Nd = 6Np in equation (3) 
for the six phenyl-ring r distributions is obviously 
erroneous. Here symmetrization fixes zero means. 
Thus ~r(~a) and, indeed, its circular equivalent ~r(~) 
(Allen & Johnson 1991), are also zero since the mean 

is known a priori. Further, the value of n~ in equa- 
tion (2) should properly be OcNp (rather than OcNp 
- 1) for the phenyl distributions. These constraints 
apply to any 7" distribution whose mean is fixed at a 
special value by symmetrization. The current soft- 
ware recognizes this situation for ~a = ~c. = 0 ° or 
180 °. 

The use of n2 = Nd in other situations is also 
incorrect. Nd has values of 6Np for all six z distribu- 
tions for a chair conformation, but only 4Np for the 
non-zero torsion angles in a boat form. This would 
imply that mean torsion angles for a chair conforma- 
tion are more precisely estimated (by a factor of 
2/6 s/2) than those for a boat, given that the distribu- 
tions have equal sample standard deviations. This 
seems intuitively incorrect, and leads us to consider 
the problem in terms of the spherical polar coordi- 
nate set of Fig. 1. Here the chair and boat forms 
have fixed 0 and ~o values. The only degree of 
freedom is associated with Q, the puckering ampli- 
tude, for which the mean of the (non-zero) symme- 
trized torsion angles is an alternative measure. 
Essentially, by permuting rj-z6 we have ensured that 
the resultant average torsion angles correspond to 
perfect chair or boat forms, i.e. 0 and ~0 are defined 
by the permutation operations. Implicitly, we have 
also averaged the endocyclic valence angles. There 
remains, then, only one degree of freedom in each 
individual crystallographic observation of the frag- 
ment, viz. that corresponding to Q. The correct value 
for n2 in equation (3) is therefore Np. We also suggest 
that Np is a suitable value for n2 for the other 
canonical forms of Table 1. The circular statistical 
treatment of Allen & Johnson (1991) has been 
amended to reflect these arguments. 

7. Concluding remarks 

The work described above represents an improve- 
ment of the symmetry-modified clustering methodo- 
logy described in ADT1, ADT2 and ADT3. A 
posteriori coalescence of symmetry-related clusters is 
used to generate average conformations with exact 
3D symmetry. The methodology is applicable to all 
three algorithms considered in ADT1 and ADT2, 
and should be applicable to any other algorithms 
that may be considered in the future. Because of this 
generality, the 'centroid dissimilarity' approach is the 
only method of cluster symmetrization so far 
encoded within the GSTA T program. 

We note that the decision as to whether clusters 
should be symmetrized, and to what degree, remains 
effectively under user control via the multiplier 
(MULT). This parallels the user control that must 
also be exercized in establishing a chemically accept- 
able clustering structure. These user interventions are 
endemic in most statistical clustering systems [see 
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Everitt (1980) for a lengthy discussion], due to a lack 
of any generally accepted and robust clustering cri- 
teria. In the chemical context, where different con- 
formations are often well separated by discrete 
energy barriers, we would hope to establish a 
decision theory to obviate user intervention. Current 
work is directed towards that aim, so as to generate 
fully automated methods for unsupervized machine 
learning from a large database such as the CSD. 

We thank referees of earlier papers in this series 
for encouraging us to present the detailed discussion 
contained in this manuscript. 
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Abstract 

Representative samples of four-, five- and six- 
membered carbocycles have been retrieved from the 
Cambridge Structural Database and have been used 
to fill, by symmetry expansion, the hyperdimensional 
conformation spaces spanned by the intra-annular 
torsion angles for these ring systems. The resulting 
distributions have been probed by principal- 
component analysis (PCA). For cyclobutane, all of 
the sample variance can be described in terms of a 
single coordinate [or principal component (PC)] 
which maps the degree of pucker about the ring 

* Part 5". Allen & Taylor (1991). 
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diagonal. In the case of cyclopentane two equally 
important PC's fully describe the sample variance, 
and together they map the pseudorotation itinerary 
which interconverts the envelope and twist confor- 
mations of this ring. For cyclopentenes, however, a 
single PC (accounting for almost 80% of sample 
variance) maps the extent of ring pucker, whilst a 
second PC (accounting for the remaining 20% of 
variance) is found to describe minor torsional distor- 
tions away from 0 ° about the double bond. PCA for 
six-membered carbocycles (cyclohexanes and cyclo- 
hexenes) reveals three PC's: one mapping the inter- 
conversion of enantiomeric chair conformers, and 
two that describe the pseudorotational interchange 
between boat and twist-boat forms. For all three ring 

© 1991 International Union of Crystallography 


